Formula/Conversion Table Wastewater Treatment, Collection, Industrial Waste, & Wastewater Laboratory Exams

Allealinity, mg/L as CaCO = (Titrant Volume, mL)(Acid Normality)(50,000)		
Alkalinity, mg/L as $CaCO_3 = \frac{1}{Sample Volume, mL}$		
$\mathbf{Amps} = \frac{\mathrm{Volts}}{\mathrm{Ohms}}$		
Area of Circle* = (0.785) (Diameter ²)		
Area of Circle = (3.14) (Radius ²)		
Area of Cone (lateral area) = $(3.14)(\text{Radius})\sqrt{\text{Radius}^2 + \text{Height}^2}$		
Area of Cone (total surface area) = $(3.14)(\text{Radius})(\text{Radius} + \sqrt{\text{Radius}^2 + \text{Height}^2})$		
Area of Cylinder (total exterior surface area) = $[End \#1 SA] + [End \#2 SA] + [(3.14)(Diameter)(Height or Depth)]$ <i>Where</i> $SA = surface area$		
Area of Rectangle* = (Length)(Width)		
Area of Right Triangle* = $\frac{(Base)(Height)}{2}$		
Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$		
Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The nth root of the product of n numbers		
Biochemical Oxygen Demand (seeded), mg/L = [(Initial DO, mg/L) - (Final DO, mg/L) - Seed Correction Factor, mg/L)][300 mL] mL of Sample		
Biochemical Oxygen Demand (unseeded), mg/L = $\frac{[(Initial DO, mg/L) - (Final DO, mg/L)][300 mL]}{mL of Sample}$		
$# CFU/100mL = \frac{[(\# of Colonies on Plate)(100)]}{mL of Sample}$		
Chemical Feed Pump Setting, % Stroke = $\frac{\text{Desired Flow}}{\text{MaximumFlow}} \times 100\%$		
Chemical Feed Pump Setting, mL/min = $\frac{(Flow, MGD)(Dose, mg/L)(3.785 L/gal)(1,000,000 gal/MG)}{(Feed Chemical Density, mg/mL)(1,440 min/day)}$		
Chemical Feed Pump Setting, mL/min =		
(Flow, m ³ /day)(Dose, mg/L) (Feed Chemical Density, g/cm ³)(Active Chemical % expressed as a decimal)(1.440 min/day)		
(i eeu enemiear Density, g/enr //Aeuve enemiear, /0 expressed as a deennar/(1,440 hill/day)		

Circumference of Circle = (3.14)(Diameter)

Composite Sample Single Portion = $\frac{(Instantaneous Flow)(Total Sample Volume)}{(Instantaneous Flow)(Total Sample Volume)}$		
(Number of Portions)(Average Flow)		
Cycle Time, min = Storage Volume, gal		
(Pump Capacity, gpm) - (Wet Well Inflow, gpm)		
Cycle Time, min = $\frac{\text{Storage Volume, m}^3}{(2m + 1)^3 (1 + 1)^3$		
(Pump Capacity, m [°] /min) - (Wet Well Inflow, m [°] /min)		
Degrees Celsius = $\frac{(\circ F - 32)}{1.8}$		
Degrees Fahrenheit = $(^{\circ}C)(1.8) + 32$		
Detention Time = $\frac{\text{Volume}}{\text{Flow}}$ Units must be compatible		
Electromotive Force, volts* = (Current, amps)(Resistance, ohms)		
Feed Rate, $lb/day^* = \frac{(Dosage, mg/L)(Flow, MGD)(8.34 lb/gal)}{Purity, \% expressed as a decimal}$		
Feed Rate, kg/day* = $\frac{\text{(Dosage, mg/L)(Flow Rate, m3/day)}}{\text{(Purity, % expressed as a decimal)(1,000)}}$		
Filter Backwash Rate, $gpm/ft^2 = \frac{Flow, gpm}{Filter Area, ft^2}$		
Filter Backwash Rate, $L/m^2 = \frac{Flow, L/sec}{Filter Area, m^2}$		
Filter Backwash Rise Rate, in/min = $\frac{(\text{Backwash Rate, gpm/ft}^2)(12 \text{ in/ft})}{7.48 \text{ gal/ft}^3}$		
Filter Backwash Rise Rate, $cm/min = \frac{Water Rise, cm}{Time, min}$		
Filter Yield, $lb/hr/ft^2 = \frac{(Solids Loading, lb/day)(Recovery, % expressed as a decimal)}{(Filter Operation, hr/day)(Area, ft2)}$		
Filter Yield, kg/hr/m ² = $\frac{(\text{Solids Concentration, \% expressed as a decimal})(\text{Sludge Feed Rate, L/hr})(10)}{(\text{Surface Area of Filter, m}^2)}$		
Flow Rate, $ft^3/sec^* = (Area, ft^2)(Velocity, ft/sec)$		
Flow Rate, $m^3/sec^* = (Area, m^2)(Velocity, m/sec)$		
Food/Microorganism Ratio = $\frac{BOD_5, lb/day}{MLVSS, lb}$		

Food/Microorganism Ratio = $\frac{BOD_5, kg/day}{MLVSS, kg}$ Force, $lb^* = (Pressure, psi)(Area, in^2)$ Force, newtons* = (Pressure, pascals)(Area, m^2) Hardness, as mg CaCO₃/L = $\frac{(\text{Titrant Volume, mL})(1,000)}{\text{Sample Volume, mL}}$ Only when the titration factor is 1.00 of EDTA Horsepower, Brake, $hp = \frac{(Flow, gpm)(Head, ft)}{(3,960)(Pump Efficiency, % expressed as a decimal)}$ Horsepower, Brake, kW = $\frac{(9.8)(\text{Flow}, \text{m}^3/\text{sec})(\text{Head}, \text{m})}{(\text{Pump Efficiency}, \% \text{ expressed as a decimal})}$ Horsepower, Motor, hp = (Flow, gpm)(Head, ft) (3,960)(Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal) Horsepower, Motor, kW = (9.8)(Flow, m³/sec)(Head, m) (Pump Efficiency, % expressed as a decimal)(Motor Efficiency, % expressed as a decimal) Horsepower, Water, $hp = \frac{(Flow, gpm)(Head, ft)}{3.960}$ Horsepower, Water, kW = (9.8) (Flow, m³/sec)(Head, m) Hydraulic Loading Rate, $gpd/ft^2 = \frac{Total Flow Applied, gpd}{Area. ft^2}$ Hydraulic Loading Rate, $m^3/day/m^2 = \frac{\text{Total Flow Applied, }m^3/day}{\text{Area }m^2}$ Loading Rate, lb/day* = (Flow, MGD)(Concentration, mg/L)(8.34 lb/gal) Loading Rate, kg/day* = $\frac{(Volume, m^3 / day)(Concentration, mg/L)}{(Volume, m^3 / day)(Concentration, mg/L)}$ 1.000 Mass, lb* = (Volume, MG)(Concentration, mg/L)(8.34 lb/gal) Mass, $kg^* = \frac{(Volume, m^3)(Concentration, mg/L)}{1.000}$ (Aeration Tank TSS, lb) + (Clarifier TSS, lb) Mean Cell Residence Time or Solids Retention Time, days = (TSS Wasted, lb/day)+(Effluent TSS, lb/day) **Milliequivalent** = (mL)(Normality)

$Molarity = \frac{Moles of Solute}{Liters of Solution}$
Motor Efficiency, $\% = \frac{\text{Brake hp}}{\text{Motor hp}} \times 100\%$
Normality = $\frac{\text{Number of Equivalent Weights of Solute}}{\text{Liters of Solution}}$
Number of Equivalent Weights = $\frac{\text{Total Weight}}{\text{Equivalent Weight}}$
Number of Moles = $\frac{\text{Total Weight}}{\text{Molecular Weight}}$
Organic Loading Rate-RBC, lb SBOD ₅ /day/1,000 ft ² = $\frac{\text{Organic Load, lb SBOD}_{5}/\text{day}}{\text{Surface Area of Media, 1,000 ft}^{2}}$
Organic Loading Rate-RBC, kg SBOD ₅ /m ² days = $\frac{\text{Organic Load, kg SBOD}_{5}/\text{day}}{\text{Surface Area of Media, m}^{2}}$
Organic Loading Rate-Trickling Filter, lb BOD ₅ /day/1,000 ft ³ = $\frac{\text{Organic Load, lb BOD}_{5}/\text{day}}{\text{Volume, 1,000 ft}^{3}}$
Organic Loading Rate-Trickling Filter, kg/m³ days = $\frac{\text{Organic Load, kg BOD}_5/\text{day}}{\text{Volume, m}^3}$
Oxygen Uptake Rate or Oxygen Consumption Rate, mg/L/min = $\frac{\text{Oxygen Usage, mg/L}}{\text{Time, min}}$
Population Equivalent, Organic = $\frac{(Flow, MGD)(BOD, mg/L)(8.34 lb/gal)}{0.17 lb BOD/day/person}$
Population Equivalent, Organic = $\frac{(Flow, m^{3}/day)(BOD, mg/L)}{(1,000)(0.077kg BOD/day/person)}$
Power, $\mathbf{kW} = \frac{(\text{Flow, L/sec})(\text{Head, m})(9.8)}{1,000}$
Recirculation Ratio-Trickling Filter = $\frac{\text{Recirculated Flow}}{\text{Primary Effluent Flow}}$
Reduction of Volatile Solids, $\% = \left(\frac{\text{VS in} - \text{VS out}}{\text{VS in} - (\text{VS in} \times \text{VS out})}\right) \times 100\%$ All information (In and Out) must be in decimal form
Removal, % = $\left(\frac{\text{In} - \text{Out}}{\text{In}}\right) \times 100\%$

Return Rate, % = $\frac{\text{Return Flow Rate}}{\text{Influent Flow Rate}} \times 100\%$ Return Sludge Rate-Solids Balance = $\frac{(MLSS, mg/L)(Flow Rate, MGD)}{(RAS Suspended Solids) - (MLSS, mg/L)}$ **Slope, %** = $\frac{\text{Drop or Rise}}{\text{Distance}} \times 100 \%$ Sludge Density Index = $\frac{100}{SVI}$ Sludge Volume Index, mL/g = $\frac{(SSV_{30}, mL/L)(1,000 \text{ mg/g})}{MLSS, mg/L}$ Solids, $mg/L = \frac{(Dry Solids, g)(1,000,000)}{Sample Volume, mL}$ Solids Capture, % (Centrifuges) = $\left[\frac{\text{Cake TS}, \%}{\text{Feed Sludge TS}, \%}\right] \times \left[\frac{(\text{Feed Sludge TS}, \%) - (\text{Centrate TSS}, \%)}{(\text{Cake TS}, \%) - (\text{Centrate TSS}, \%)}\right] \times 100\%$ Solids Concentration, $mg/L = \frac{Weight, mg}{Volume, L}$ Solids Loading Rate, $lb/day/ft^2 = \frac{Solids Applied, lb/day}{Surface Area, ft^2}$ Solids Loading Rate, $kg/day/m^2 = \frac{Solids Applied, kg/day}{Surface Area, m^2}$ Solids Retention Time: see Mean Cell Residence Time Specific Gravity = $\frac{\text{Specific Weight of Substance, lb/gal}}{8.34 \text{ lb/gal}}$ Specific Gravity = $\frac{\text{Specific Weight of Substance, kg/L}}{1.0 \text{ kg/L}}$ Specific Oxygen Uptake Rate or Respiration Rate, $(mg/g)/hr = \frac{SOUR, mg/L/min(60 min)}{MLVSS, g/L(1 hr)}$ Surface Loading Rate or Surface Overflow Rate, $gpd/ft^2 = \frac{Flow, gpd}{Area, ft^2}$ Surface Loading Rate or Surface Overflow Rate, $Lpd/m^2 = \frac{Flow, Lpd}{Area, m^2}$ Three Normal Equation = $(C_1 \times V_1) + (C_2 \times V_2) = (C_3 \times V_3)$ Where $V_1 + V_2 = V_3$; C = concentration, V = volume or flow; Concentration units must match; Volume units must match

Total Solids, $\% = \frac{(\text{Dried Weight}, g) - (\text{Tare Weight}, g)(100)}{(\text{Wet Weight}, g) - (\text{Tare Weight}, g)}$

Two Normal Equation = $(C_1 \times V_1) = (C_2 \times V_2)$

must match: Volume units must match Velocity, ft/sec = $\frac{\text{Flow Rate, ft}^3 / \text{sec}}{\text{Area ft}^2}$ **Velocity, ft/sec** = $\frac{\text{Distance, ft}}{\text{Time, sec}}$ Velocity, m/sec = $\frac{\text{Flow Rate, m}^3 / \text{sec}}{\text{Area, m}^2}$ Velocity, $m/sec = \frac{Distance, m}{dt}$ Time. sec **Volatile Solids, %** = $\left[\frac{(\text{Dry Solids}, g) - (\text{Fixed Solids}, g)}{(\text{Dry Solids}, g)}\right] \times 100\%$ Volume of Cone* = (1/3)(0.785)(Diameter²)(Height) Volume of Cylinder* = (0.785)(Diameter²)(Height) Volume of Rectangular Tank* = (Length)(Width)(Height) **Waste Milliequivalent** = (mL)(Normality) Water Use, $gpcd = \frac{Volume of Water Produced, gpd}{Population}$ Water Use, $Lpcd = \frac{Volume of Water Produced, Lpd}{Population}$ Watts (AC circuit) = (Volts)(Amps)(Power Factor) Watts (DC circuit) = (Volts)(Amps) Weir Overflow Rate, $gpd/ft = \frac{Flow, gpd}{Weir Length, ft}$ Weir Overflow Rate, $Lpd/m = \frac{Flow, Lpd}{Weir Length, m}$ **Wire-to-Water Efficiency,** $\% = \frac{\text{Water hp}}{\text{Motor hp}} \times 100\%$ Wire-to-Water Efficiency, $\% = \frac{(Flow, gpm)(Total Dynamic Head, ft)(0.746 kW/hp)(100\%)}{(3,960)(Electrical Demand, kW)}$

Where C = Concentration, V = volume or flow: Concentration units

Abbreviations

atmatmospheres	MGDmillion US gallons per day
BOD ₅ biochemical oxygen demand	mg/Lmilligrams per liter
C Celsius	minminutes
CBOD ₅ carbonaceous biochemical oxygen demand	mLmilliliters
cfscubic feet per second	MLmillion liters
cmcentimeters	MLDmillion liters per day
COD chemical oxygen demand	MLSSmixed liquor suspended solids
DO dissolved oxygen	MLVSSmixed liquor volatile suspended solids
EMFelectromotive force	OCRoxygen consumption rate
FFahrenheit	ORPoxidation reduction potential
F/M ratio food to microorganism ratio	OURoxygen uptake rate
ft feet	PEpopulation equivalent
ft lb foot-pound	ppbparts per billion
g grams	ppmparts per million
galUS gallons	psipounds per square inch
gfdUS gallons flux per day	Q flow
gpcdUS gallons per capita per day	RASreturn activated sludge
gpdUS gallons per day	RBCrotating biological contactor
gpggrains per US gallon	RPM revolutions per minute
gpmUS gallons per minute	SBOD ₅ Soluble BOD
hphorsepower	SDIsludge density index
hr hours	secsecond
ininches	SOURspecific oxygen uptake rate
kgkilograms	SRTsolids retention time
kmkilometers	SSsettleable solids
kPakilopascals	SSV ₃₀ settled sludge volume 30 minute
kWkilowatts	SVIsludge volume index
kWhkilowatt-hours	TOCtotal organic carbon
Lliters	TStotal solids
lbpounds	TSStotal suspended solids
Lpcdliters per capita per day	VSvolatile solids
Lpdliters per day	VSSvolatile suspended solids
Lpm liters per minute	Wwatts
LSILangelier Saturation Index	WASwaste activated sludge
m meters	ydyards
MCRTmean cell residence time	yryears
MG million US gallons	

Conversion Factors

1 acre	$\dots = 43,560 \text{ ft}^2$
	= 4,046.9 m ²
1 acre foot of water	= 326,000 gal
1 atm	$\dots = 33.9$ ft of water
	= 10.3 m of water
	= 14.7 psi
	= 101.3 kPa
1 cubic foot of water	= 7.48 gal
	= 62.4 lb
1 cubic foot per second	= 0.646 MGD
-	= 448.8 gpm
1 cubic meter of water	= 1,000 kg
	= 1,000 L
	= 264 gal
1 foot	=0.305 m
1 foot of water	= 0.433 psi
1 gallon (US)	= 3.785 L
	= 8.34 lb of water
1 grain per US gallon	= 17.1 mg/L
1 hectare	$ = 10,000 \text{ m}^2$
1 horsepower	= 0.746 kW
	= 746 W
	= 33,000 ft lb/min

VSSvolatile sus	spended solids
Wwatts	
WASwaste activ	ated sludge
y d yards	
yryears	
1 inch	= 2.54 cm
1 litar par sacand	-0.0864 MI D
1 meter of water	$-0.8 \text{ tr} \text{D}_{2}$
I meter of water	– 9.6 KPa
	$\dots = 2,205 \text{ Ib}$
	= 1,000 kg
I mile	$\dots = 5,280 \text{ ft}$
	= 1.61 km
1 million US gallons per da	$y \dots = 694 \text{ gpm}$
	$= 1.55 \text{ ft}^{3}/\text{sec}$
1 pound	$\dots = 0.454 \text{ kg}$
1 pound per square inch	= 2.31 ft of water
	= 6.89 kPa
1 square meter	= 1.19 vd^2
1 ton	$\dots = 2.000$ lb
1%	= 10,000 mg/L
π or pi	= 3.14
Population Equivalent.	
hvdraulic	$\dots = 100 \text{ gal/person/day}$
,	= 3785 L/person/day
Population Fauivalent	e voie Esponson aug
rganic	= 0.17 lb BOD/person/day
or game	$= 0.077 \ln p DD/p \sin (1/4a)$
	-0.07 kg BOD/person/day

*Pie Wheels

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. (m^2) .

*Pie Wheel Format for this equation is available at the end of this document

Copyright © 2017 by Association of Boards of Certification

Wastewater Treatment, Collection, Industrial, Laboratory Formula/Conversion Table - Page 8 of 8